Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956610

RESUMO

This paper presents the viscosifying and oil recovery efficiencies of a novel high-molecular-weight ternary polyampholyte (TPA), composed of 80 mol.% acrylamide (AAm) (a nonionic monomer), 10 mol.% 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) (an anionic monomer), and 10 mol.% (3-acrylamidopropyl) trimethylammonium chloride (APTAC) (a cationic monomer), in various high-salinity brines as compared to the efficiency of hydrolyzed poly(acrylamide) (HPAM), which is the most commonly used polymer in oil production. The results show that, in a range of salinity from 200 to 300 g∙L-1, the viscosity of the TPA solution is rather high and relatively stable, whereas that of HPAM severely decreases. The ability of TPA to increase its viscosity in extremely high salinity brines is explained by the antipolyelectrolyte effect, resulting in the unfolding of macromolecular chains of charge-balanced polyampholytes at a quasi-neutral state, which occurs due to the screening of the electrostatic attraction between oppositely charged moieties. The novelty of this research is that, in high-salinity reservoirs, the amphoteric terpolymer Aam-AMPS-APTAC may surpass HPAM in oil displacement capability.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889568

RESUMO

Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90-APTAC5-AMPS5, NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5, were characterized by a combination of 1H NMR and FTIR spectroscopy, TGA, UV-Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 °C and at ionic strengths (µ) of 10-3 to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...